Jon Awbrey<p>Cactus Language • Overview 3.2<br>• <a href="https://inquiryintoinquiry.com/2025/03/07/cactus-language-overview-3/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2025/03</span><span class="invisible">/07/cactus-language-overview-3/</span></a></p><p>Given a body of conceivable propositions we need a way to follow the threads of their indications from their object domain to their values for the mind and a way to follow those same threads back again. Moreover, we need to implement both ways of proceeding in computational form. Thus we need programs for tracing the clues sentences provide from the universe of their objects to the signs of their values and, in turn, from signs to objects. Ultimately, we need to render propositions so functional as indicators of sets and so essential for examining the equality of sets as to give a rule for the practical conceivability of sets. Tackling that task requires us to introduce a number of new definitions and a collection of additional notational devices, to which we now turn.</p><p>Resources —</p><p>Cactus Language • Overview<br>• <a href="https://oeis.org/wiki/Cactus_Language_%E2%80%A2_Overview" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Cactus_Language_</span><span class="invisible">%E2%80%A2_Overview</span></a></p><p>Survey of Animated Logical Graphs<br>• <a href="https://inquiryintoinquiry.com/2024/03/18/survey-of-animated-logical-graphs-7/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/03</span><span class="invisible">/18/survey-of-animated-logical-graphs-7/</span></a></p><p>Survey of Theme One Program<br>• <a href="https://inquiryintoinquiry.com/2024/02/26/survey-of-theme-one-program-6/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/02</span><span class="invisible">/26/survey-of-theme-one-program-6/</span></a></p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/LogicalGraphs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LogicalGraphs</span></a> <a href="https://mathstodon.xyz/tags/DifferentialLogic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DifferentialLogic</span></a> <br><a href="https://mathstodon.xyz/tags/AutomataTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AutomataTheory</span></a> <a href="https://mathstodon.xyz/tags/FormalLanguages" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FormalLanguages</span></a> <a href="https://mathstodon.xyz/tags/FormalGrammars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FormalGrammars</span></a> <a href="https://mathstodon.xyz/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GraphTheory</span></a></p>