sfba.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance for the San Francisco Bay Area. Come on in and join us!

Server stats:

2.4K
active users

#datastructures

3 posts3 participants0 posts today
Jack William Bell<p>Need to do a dive on this and see if it works as described…</p><p>&gt; Semi-typeless dynamic array for <a href="https://rustedneuron.com/tags/C" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>C</span></a>. <a href="https://gist.github.com/CoffeeCatRailway/c55f8f56aaf40e2ecd5c3c6994370289" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">gist.github.com/CoffeeCatRailw</span><span class="invisible">ay/c55f8f56aaf40e2ecd5c3c6994370289</span></a></p><p><a href="https://rustedneuron.com/tags/programming" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>programming</span></a> <a href="https://rustedneuron.com/tags/DataStructures" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataStructures</span></a></p>
Leanpub<p>Data Munging With Perl [2ed]: Techniques for data recognition, parsing, transformation and filtering <a href="https://leanpub.com/datamungingwithperl" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">leanpub.com/datamungingwithperl</span><span class="invisible"></span></a> by Dave Cross is the featured book on the Leanpub homepage! <a href="https://leanpub.com" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">leanpub.com</span><span class="invisible"></span></a> <a href="https://mastodon.social/tags/Perl" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Perl</span></a> <a href="https://mastodon.social/tags/DataStructures" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataStructures</span></a> <a href="https://mastodon.social/tags/SoftwareEngineering" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SoftwareEngineering</span></a> <a href="https://mastodon.social/tags/books" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>books</span></a> <a href="https://mastodon.social/tags/ebooks" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ebooks</span></a></p>
Leanpub<p>Mastering Discrete Mathematics - From Theory to Real World Engineering Applications <a href="https://leanpub.com/discretemathematics" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">leanpub.com/discretemathematics</span><span class="invisible"></span></a> by Kalyan Chakravarthy Kodela is the featured book on the Leanpub homepage! <a href="https://leanpub.com" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">leanpub.com</span><span class="invisible"></span></a> <a href="https://mastodon.social/tags/DataStructures" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataStructures</span></a> <a href="https://mastodon.social/tags/books" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>books</span></a> <a href="https://mastodon.social/tags/ebooks" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ebooks</span></a> <a href="https://mastodon.social/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mastodon.social/tags/engineering" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>engineering</span></a></p><p>Dive into the world of discrete mathematics with this expertly crafted guide.</p><p>Find it on Leanpub!</p>
Mark Gritter<p>For $PROJECT I am wondering how sparse a bitmap needs to be before it's worth looking at alternatives.</p><p>Say I have a 32-bit random seed and it produces a tuple (x_1, x_2, ..., x_n) of attributes through some process we want to analyze. What I'd like is to build an index that lets me identify seed values with, say, x_1=4, or quickly intersect several indexes to find a seed value with x_1=4 and x_2 = 13 and x_3 = 5.</p><p>If the domain of x_i is small (say, 16 different values) then we could use a bunch of bitmaps -- they're only 512MiB each. Each bitmap will be only 6% populated, is that enough to consider a fancier representation that compresses the bitmap?</p><p>I've read "Searchable compressed representations of very sparse bitmaps" <a href="https://www.stevenpigeon.com/Publications/publications/SparseBitmap.pdf" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">stevenpigeon.com/Publications/</span><span class="invisible">publications/SparseBitmap.pdf</span></a> but my feeling right now is this isn't a good fit.</p><p>There are a bunch of ideas of the form "index a collection of containers, which may be arrays or compressed arrays or bitmaps" which probably only work well when the set is not very evenly distributed.</p><p><a href="https://mathstodon.xyz/tags/DataStructures" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataStructures</span></a> <a href="https://mathstodon.xyz/tags/ExpressiveRangeAnalysis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ExpressiveRangeAnalysis</span></a></p>